APP推广合作
联系“鸟哥笔记小乔”
数据经营管理(你的数据化经营为何屡战屡败,118位CTO给出的7个管理经验)
2024-04-03 12:22:21

你的数据化经营为何屡战屡败,118位CTO给出的7个管理经验

数据经营管理(你的数据化经营为何屡战屡败,118位CTO给出的7个管理经验)

大数据文摘作品

编译:傅一洋、笪洁琼、魏子敏

提升数据分析能力正成为企业数字化转型的当务之急。

成功的企业数字化案例显然有自己的共同点:

重视数据质量、重视数据上下文、以及建立有效的数据管理体制。

而失败的企业则各有各的问题。

我们调研了118家公司的首席信息官(CIO)、首席技术官(CTO)、数据总管以及IT部门的员工及顾问,找到了这7种企业数据实践中最可能出现的问题。

“数据整合是当今数据分析面临的最大挑战。”SAS公司的业务解决方案顾问,数据治理专业组织(DGPO)的首席发言人Anne Buff说道。

实际上,许多公司只是简单地将数据堆积在一起,并未对不同来源的数据进行整合。就拿身份认定来说,比如一套系统下“路人A”的信息与另一套系统下“路人A”(甚至可能是重名)的信息之间,没有进行关联,这样的话,就无法对“路人A”的身份进行完整性描述。

“数据整合并不等于将数据集中到一起,”Buff说,“对于某个研究对象,要将不同来源的数据相互关联,以便获取更准确的信息定位。一旦你这样做,当这一切相关数据都聚集在一起时,它将达到一个更完整的结果,即比尔史密斯是谁。你必须将它们关联起来。”

Buff还说道:各种数据集成技术使之成为可能,同时,正确的选用、实现并执行数据整合的技术,减少不必要的人工操作和重复劳动这点很重要。

数据科学家会通过数据来寻找并分析竞争优势,可能的突破点等等,因此,数据整合也变得越发重要。

“如果不将以往所有的数据整合,就无法发现其中的模式。”Buff说道。

忽视了不同业务对数据的需求差别

“整合的集成数据技术对于一个成功的分析程序是至关重要的,必须要意识到不同业务部门对数据的需求是不同的,”Buff说道,“数据的形式不能千篇一律。相反,还需要考虑数据供给,IT部门需要将业务类型与数据形式相匹配。”

并不是所有的业务都需要整合过后的数据。以金融机构的众多需求为例,风控部门需要未经处理的原始数据,以从中发现异常。比如通过搜寻多组数据中某个人地址信息的,确定其是否申请了多笔贷款等。

“这些业务更倾向于研究多组相似数据间的差别,因此这些差别是要有所保留的。”Buff解释道。

另一方面,诸如市场部等部门希望实现准确的用户信息定位,因此只需要其中正确的那组数据。

数据科学家这个职业在过去几年中正迅速抢占硅谷、纽约、中关村、西二旗的各大互联网公司。一大批传统企业也开始设置这个职位,并且大批招募。

毕竟,每个公司都希望通过势头正盛的新兴技术使业务分析具有一定的预测性和分析说明,这需要专业团队和人员的支持。

但通常,这些公司挂出的招募岗位只有数据科学家这一种。

这是远远不够的。

数据科学家需要数据工程师来收集数据集,但是,数据工程师这一职位,在许多公司没有受到应有的重视。

“目前,大公司对数据工程师的需求增速是对数据科学家需求的两倍。” 贝恩公司旧金山办事处合伙人,高级分析和数字化实践负责人Lori Sherer这样说。

美联邦劳工统计局预测,目前数据工程师的平均年薪已经达到135,800美元,且未来十年里,对数据工程师的需求将继续保持快速增长态势,2026年前将新增44200个相关的就业岗位。

数据经营管理(你的数据化经营为何屡战屡败,118位CTO给出的7个管理经验)

有专家称,同很多IT岗位一样,数据工程师的人才供不应求,部分企业会通过招聘或者从IT部门普通员工中选拔培训,来弥补这一人才缺口。

近十年来,随着数据存储成本不断降低, IT部门可以将大量数据存储起来,并保存很长的时间。对于不断增长的数据量和数据分析需求来说,这是个好消息。

“公司都希望拥有大量数据。”Soaring Eagle咨询公司的创始人、《挖掘新黄金:管理你的商业数据(Mining New Gold: Managing Your Business Data)》的合著作者Penny Garbus说道。

但Garbus同时认为,许多企业都将数据留存的过久了。

“这不仅仅是存储成本的问题,超过十年的数据基本没有时效性了。”她说,“数据要被赋予生命周期。”

Garbus认为,数据留存期限要根据不同部门、不同组织来确定。例如,零售行业需要的是即时和相关的数据,而市场部门需要多年来的历史数据以探寻趋势。

这需要IT部门根据不同部门的需求,制定一套明确的数据时效标准,从而确保数据的有效性。

Garbus还补充道,对于那些“老旧”数据,只要保证有就可以了,不要将其放在核心数据库中。

“我们总喜欢用最容易获得的数据进行建模与分析,而不是最相关的。” Booz Allen Hamilton(IT咨询公司)的高级副总裁Steve Escaravage说。

他认为,这是目前公司或组织普遍存在的一个误区。或许,在寻找更多的数据集之前,应该先想想数据是否相关,而不是询问我们是否有正确的数据。

比如,许多公司会从大量数据中寻找异常。尽管充分性很重要,但优秀的公司同样兼顾数据的针对性。他们会关注来自于特定个体和机构的数据,并从中发现异常。比如医疗结构在分析病例时,会考虑到医生的轮班周期等。

Escaravage认为,公司或组织可以列一个数据意愿清单,由业务部门填写意愿,由CIO、CTO或首席数据高管实现数据收集。

“当今数据分析存在一个显著的问题,是数据偏见。偏向性的数据会造成分析结果偏差,从而影响到正确的业务决策与结果。其中的偏见来源于整个分析过程涉及的许多个部门,包括IT部门处理数据方式,都会有一些偏见。”Escaravage说道。

“很多时候,IT部门在对数据来源的追踪上,做的并不完善。如果无法意识到这一点,就会影响到数据模型的的性能,而且,缺乏数据来源的可见性使得对偏见的控制更为困难。”

Escaravage觉得,IT有义务搞清楚数据的来源在哪里,以及来源的相关情况。在投资数据管理的同时,也要制定一套源数据管理解决方案。

Escaravage认为,不仅应该有一个强大的源数据管理程序,它可以追踪数据的来源,以及它是如何在系统中运行的,它应该为用户提供一些历史信息,并为一些通过分析产生的结果提供背景信息。

“有时我们会认为,拥有绝佳的数据和模型已经足够完美,但是近几年,由于分析方法越来越复杂,对数据和分析结果的解释变得越来越少。不像前几年,在将分析结果应用于业务时,会根据业务规则对数据进行分析阐述。”他说。

Escaravage解释道,更新的深度学习模型为分析结果提供了一些注解,也为决策提供了一些可行的建议,但无法提供对最佳决策有帮助甚至至关重要的上下文,例如某件事情发生的可能性与确定性等信息。因此,需要能提供更好的用户界面以帮助用户进行决策。

“其中的技术问题在于,要明确用户与数据模型的交互程度如何。UI/UX界面决定了系统对用户的透明度,而透明度取决于用户对分析结果的钻研深度,这些都是首席信息官(CIO)在建立分析系统前,应当考虑清楚的。”

相关报道:

https://www-cio-com.cdn.ampproject.org/c/s/www.cio.com/article/3269012/analytics/why-data-analytics-initiatives-still-fail.amp.html

数据经营管理(你的数据化经营为何屡战屡败,118位CTO给出的7个管理经验)
运营那些事儿
分享到朋友圈
收藏
收藏
评分

综合评分:

我的评分
Xinstall 15天会员特权
Xinstall是专业的数据分析服务商,帮企业追踪渠道安装来源、裂变拉新统计、广告流量指导等,广泛应用于广告效果统计、APP地推与CPS/CPA归属统计等方面。
20羽毛
立即兑换
一书一课30天会员体验卡
领30天VIP会员,110+门职场大课,250+本精读好书免费学!助你提升职场力!
20羽毛
立即兑换
顺丰同城急送全国通用20元优惠券
顺丰同城急送是顺丰推出的平均1小时送全城的即时快送服务,专业安全,准时送达!
30羽毛
立即兑换
运营那些事儿
运营那些事儿
发表文章43451
确认要消耗 羽毛购买
数据经营管理(你的数据化经营为何屡战屡败,118位CTO给出的7个管理经验)吗?
考虑一下
很遗憾,羽毛不足
我知道了

我们致力于提供一个高质量内容的交流平台。为落实国家互联网信息办公室“依法管网、依法办网、依法上网”的要求,为完善跟帖评论自律管理,为了保护用户创造的内容、维护开放、真实、专业的平台氛围,我们团队将依据本公约中的条款对注册用户和发布在本平台的内容进行管理。平台鼓励用户创作、发布优质内容,同时也将采取必要措施管理违法、侵权或有其他不良影响的网络信息。


一、根据《网络信息内容生态治理规定》《中华人民共和国未成年人保护法》等法律法规,对以下违法、不良信息或存在危害的行为进行处理。
1. 违反法律法规的信息,主要表现为:
    1)反对宪法所确定的基本原则;
    2)危害国家安全,泄露国家秘密,颠覆国家政权,破坏国家统一,损害国家荣誉和利益;
    3)侮辱、滥用英烈形象,歪曲、丑化、亵渎、否定英雄烈士事迹和精神,以侮辱、诽谤或者其他方式侵害英雄烈士的姓名、肖像、名誉、荣誉;
    4)宣扬恐怖主义、极端主义或者煽动实施恐怖活动、极端主义活动;
    5)煽动民族仇恨、民族歧视,破坏民族团结;
    6)破坏国家宗教政策,宣扬邪教和封建迷信;
    7)散布谣言,扰乱社会秩序,破坏社会稳定;
    8)宣扬淫秽、色情、赌博、暴力、凶杀、恐怖或者教唆犯罪;
    9)煽动非法集会、结社、游行、示威、聚众扰乱社会秩序;
    10)侮辱或者诽谤他人,侵害他人名誉、隐私和其他合法权益;
    11)通过网络以文字、图片、音视频等形式,对未成年人实施侮辱、诽谤、威胁或者恶意损害未成年人形象进行网络欺凌的;
    12)危害未成年人身心健康的;
    13)含有法律、行政法规禁止的其他内容;


2. 不友善:不尊重用户及其所贡献内容的信息或行为。主要表现为:
    1)轻蔑:贬低、轻视他人及其劳动成果;
    2)诽谤:捏造、散布虚假事实,损害他人名誉;
    3)嘲讽:以比喻、夸张、侮辱性的手法对他人或其行为进行揭露或描述,以此来激怒他人;
    4)挑衅:以不友好的方式激怒他人,意图使对方对自己的言论作出回应,蓄意制造事端;
    5)羞辱:贬低他人的能力、行为、生理或身份特征,让对方难堪;
    6)谩骂:以不文明的语言对他人进行负面评价;
    7)歧视:煽动人群歧视、地域歧视等,针对他人的民族、种族、宗教、性取向、性别、年龄、地域、生理特征等身份或者归类的攻击;
    8)威胁:许诺以不良的后果来迫使他人服从自己的意志;


3. 发布垃圾广告信息:以推广曝光为目的,发布影响用户体验、扰乱本网站秩序的内容,或进行相关行为。主要表现为:
    1)多次发布包含售卖产品、提供服务、宣传推广内容的垃圾广告。包括但不限于以下几种形式:
    2)单个帐号多次发布包含垃圾广告的内容;
    3)多个广告帐号互相配合发布、传播包含垃圾广告的内容;
    4)多次发布包含欺骗性外链的内容,如未注明的淘宝客链接、跳转网站等,诱骗用户点击链接
    5)发布大量包含推广链接、产品、品牌等内容获取搜索引擎中的不正当曝光;
    6)购买或出售帐号之间虚假地互动,发布干扰网站秩序的推广内容及相关交易。
    7)发布包含欺骗性的恶意营销内容,如通过伪造经历、冒充他人等方式进行恶意营销;
    8)使用特殊符号、图片等方式规避垃圾广告内容审核的广告内容。


4. 色情低俗信息,主要表现为:
    1)包含自己或他人性经验的细节描述或露骨的感受描述;
    2)涉及色情段子、两性笑话的低俗内容;
    3)配图、头图中包含庸俗或挑逗性图片的内容;
    4)带有性暗示、性挑逗等易使人产生性联想;
    5)展现血腥、惊悚、残忍等致人身心不适;
    6)炒作绯闻、丑闻、劣迹等;
    7)宣扬低俗、庸俗、媚俗内容。


5. 不实信息,主要表现为:
    1)可能存在事实性错误或者造谣等内容;
    2)存在事实夸大、伪造虚假经历等误导他人的内容;
    3)伪造身份、冒充他人,通过头像、用户名等个人信息暗示自己具有特定身份,或与特定机构或个人存在关联。


6. 传播封建迷信,主要表现为:
    1)找人算命、测字、占卜、解梦、化解厄运、使用迷信方式治病;
    2)求推荐算命看相大师;
    3)针对具体风水等问题进行求助或咨询;
    4)问自己或他人的八字、六爻、星盘、手相、面相、五行缺失,包括通过占卜方法问婚姻、前程、运势,东西宠物丢了能不能找回、取名改名等;


7. 文章标题党,主要表现为:
    1)以各种夸张、猎奇、不合常理的表现手法等行为来诱导用户;
    2)内容与标题之间存在严重不实或者原意扭曲;
    3)使用夸张标题,内容与标题严重不符的。


8.「饭圈」乱象行为,主要表现为:
    1)诱导未成年人应援集资、高额消费、投票打榜
    2)粉丝互撕谩骂、拉踩引战、造谣攻击、人肉搜索、侵犯隐私
    3)鼓动「饭圈」粉丝攀比炫富、奢靡享乐等行为
    4)以号召粉丝、雇用网络水军、「养号」形式刷量控评等行为
    5)通过「蹭热点」、制造话题等形式干扰舆论,影响传播秩序


9. 其他危害行为或内容,主要表现为:
    1)可能引发未成年人模仿不安全行为和违反社会公德行为、诱导未成年人不良嗜好影响未成年人身心健康的;
    2)不当评述自然灾害、重大事故等灾难的;
    3)美化、粉饰侵略战争行为的;
    4)法律、行政法规禁止,或可能对网络生态造成不良影响的其他内容。


二、违规处罚
本网站通过主动发现和接受用户举报两种方式收集违规行为信息。所有有意的降低内容质量、伤害平台氛围及欺凌未成年人或危害未成年人身心健康的行为都是不能容忍的。
当一个用户发布违规内容时,本网站将依据相关用户违规情节严重程度,对帐号进行禁言 1 天、7 天、15 天直至永久禁言或封停账号的处罚。当涉及欺凌未成年人、危害未成年人身心健康、通过作弊手段注册、使用帐号,或者滥用多个帐号发布违规内容时,本网站将加重处罚。


三、申诉
随着平台管理经验的不断丰富,本网站出于维护本网站氛围和秩序的目的,将不断完善本公约。
如果本网站用户对本网站基于本公约规定做出的处理有异议,可以通过「建议反馈」功能向本网站进行反馈。
(规则的最终解释权归属本网站所有)

我知道了
恭喜你~答对了
+5羽毛
下一次认真读哦
成功推荐给其他人
+ 10羽毛
评论成功且进入审核!审核通过后,您将获得10羽毛的奖励。分享本文章给好友阅读最高再得15羽毛~
(羽毛可至 "羽毛精选" 兑换礼品)
好友微信扫一扫
复制链接